Рубрика «Статьи по математике»

Когда происходит что-то странное с бесконечными суммами

Лучано Рила

Гвидо Гранди (1671--1742)

Когда мы имеем дело с бесконечностью, могут случаться странные вещи. Рассмотрим следующую сумму

    \[S=1-1+1-1+1-1+1-1+\ldots\]

Она называется рядом Гранди, в честь итальянского математика, философа и священника Гвидо Гранди (1671-1742).

Если сгруппировать слагаемые следующим образом

    \[S=(1-1)+(1-1)+(1-1)+(1-1)+\ldots,\]

то легко увидеть, что S должно быть равно нулю, поскольку каждая скобка равна нулю. Однако ничто не мешает нам сгруппировать слагаемые по-другому, например, так:

    \[S=1+(-1+1)+(-1+1)+(-1+1)+(-1+1)+\ldots\]

В этом случае должно S должно быть равно 1! Существует еще и третий способ оценки этой суммы. Скажем, мы перепишем ее в виде

    \[S=0+1-1+1-1+1-1+1-1+\ldots\]

Все, что мы сделали, — добавили нуль в начале, так что я надеюсь, все согласны, что сумма совсем не изменилась. Теперь запишем ее два раза

    \[S=1-1+1-1+1-1+1-1+\ldots\]

    \[S=0+1-1+1-1+1-1+1-\ldots\]

и сложим оба ряда, получим Читать полностью ‘Когда происходит что-то странное с бесконечными суммами’ »

Наглядное доказательство неравенства между средним арифметическим и средним геометрическим

Хорошо известно, что среднее геометрическое двух неотрицательных чисел всегда не больше их среднего арифметического:

    \[\sqrt{xy}\le\frac{x+y}{2}.\]

Алгебраическое доказательство этого факта и его обобщение на n чисел приведены здесь.

Однако данное неравенство можно доказывать разными способами. Приведем здесь его геометрическое доказательство. В дальнейшем m обозначает среднее арифметическое чисел x и y, а g — их среднее геометрическое.

Читать полностью ‘Наглядное доказательство неравенства между средним арифметическим и средним геометрическим’ »

Теорема Морли

Фрэнк Морли (1860–1937) — английский математик, известный своими работами по алгебре и геометрии. Морли любил придумывать задачи, и за более чем 50 лет своей работы со времени окончания Кембриджского университета он опубликовал более 60 задач в Educational Times. Большинство этих задач — геометрические. Морли очень хорошо играл в шахматы. Одни раз он даже выиграл у чемпиона мира по шахматам Эмануэля Ласкера (примеч. Интересно, что Ласкер тоже занимался математикой, и одна из теорем названа его именем — теорема Ласкера — Нётер). Морли  внес огромный вклад в развитие математики в США. В течение 30 лет он был редактором журнала American Journal of Mathematics, работал и в журнале Bulletin of the American Mathematical Society, в 1919–20 годах был президентом Американского математического общества.

Самым известным результатом Фрэнка Морли является теорема о трисектрисах треугольника, носящая его имя.

Сначала определим трисектрису, а затем докажем теорему. Читать полностью ‘Теорема Морли’ »

Теорема Содди

Фредерик Содди (1877—1956) — английский химик, изучавший проблемы радиоактивности совместно с Резерфордом, выдвинувший теорию изотопов, удостоенный Нобелевской премии по химии 1921 г. за вклад в теорию строения атома. Кроме химии, Ф. Содди интересовался экономическими, социальными и политическими теориями, написал несколько книг на эти темы, а также занимался некоторыми математическими задачами.

Следующая довольно красивая теорема, долгое время считавшаяся гипотезой, принадлежит именно ему, хотя доказал ее Коксетер.

Теорема Содди. Пусть три окружности с радиусами a,b,c касаются внешним образом. Пусть r — радиус окружности, касающейся трех данных окружностей внешним образом, а R — радиус окружности, касающейся трех данных окружностей внутренним образом. Тогда имеют место равенства

    \[2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{r^2}\right)=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{r}\right)^2,\]

    \[2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{R^2}\right)=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{R}\right)^2.\]

Читать полностью ‘Теорема Содди’ »

Бесконечность или -1/12?

Дэвид Берман, Марианна Фрейбергер

Недавно обсуждался очень странный результат. Утверждается, что, когда вы сложите все натуральные числа

    \[1 +2 +3 +4 + \ldots,\]

то сумма будет равна -1/12. Данная идея демонстрируется в видео Numberphile, где утверждается, что результат доказан, а также рассказывается, что он повсеместно используется в физике. Данная идея так поразила людей, что она даже попала в “Нью-Йорк Таймс’’. Итак, что же все это значит? Читать полностью ‘Бесконечность или -1/12?’ »

Теорема (звезда Давида)

Эта теорема представляет собой одно из арифметических свойств биномиальных коэффициентов, или чисел {\sf C}_n^k.

Теорема (звезда Давида). Наибольший общий делитель чисел {\sf C}_{n-1}^k,{\sf C}_{n}^{k-1} и {\sf C}_{n+1}^{k+1} равен наибольшему общему делителю чисел {\sf C}_{n-1}^{k-1},{\sf C}_{n}^{k+1} и {\sf C}_{n+1}^{k}.

Чтобы понять, почему эта теорема называется звездой Давида, посмотрите на следующий рисунок. Наибольший общий делитель чисел, стоящих в синих углах и наибольший общий делитель чисел, стоящих в фиолетовых углах, равны. Вместе эти два треугольники образуют звезду Давида.

Например, если n=4 и k=2, теорема утверждает, что наибольший общий делитель {\sf C}_3^2,{\sf C}_4^1 и {\sf C}_5^3 равен наибольшему общему делителю {\sf C}_3^1,{\sf C}_4^3 и {\sf C}_5^2. Очевидно, это не самый интересный пример, потому что при упрощении обоих НОД получаем НОД(3,4,10), который равен 1. Давайте рассмотрим другой пример. Читать полностью ‘Теорема (звезда Давида)’ »