Рубрика «Статьи по математике»

Чудесный треугольник Блеза Паскаля

Все узнают о треугольнике Паскаля в юности. Но, видимо, узнают не все чудеса, которые содержит треугольник. В самом деле, мы до сих пор открываем новые вещи!

Строится треугольник довольно легко: по внешним краям нужно поставить единицы, а каждое число внутри равно сумме двух чисел, которые стоят над ним. Так, третье число в шестой строке равно 10, потому что это сумма чисел 4 и 6.

Внимание! На самом деле мы будем говорить, что 10 является вторым числом в пятой строке. По причинам, которые скоро станут ясны, мы начинаем нумеровать строки и столбцы треугольника с нуля. Например, второе число в четвертой строке равно 6.

Зная правило сложения, можно продолжать бесконечно: вы можете написать столько строк, сколько позволит ваше терпение.

Первые 10 строк треугольника Паскаля

Читать полностью ‘Чудесный треугольник Блеза Паскаля’ »

Теорема Никомаха

Никомах — математик, философ, теоретик музыки, живший в первой половине второго века н.э. в Герасе (ныне Джераш на севере Иордании). О самом Никомахе сведений не имеется, однако до нас дошли его сочинения. При этом “Ввведение в арифметику” и “Руководство по гармонике” сохранились полностью.

Теорема (Никомах).

    \[1^3+2^3+3^3+\ldots+n^3=(1+2+3+\ldots+n)^2.\]

Читать полностью ‘Теорема Никомаха’ »

Соотношение Бретшнайдера и теорема Стюарта

Соотношение Бретшнайдера — аналог теоремы косинусов для треугольника, интересное соотношение между элементами четырехугольника ABCD.

Введем обозначения, как показано на рисунке:

Теорема. Справедливо следующее равенство (соотношение Бретшнайдера):

    \[(ef)^2=(ac)^2+(bd)^2-2abcd\cos(\angle A+\angle C).\]

Читать полностью ‘Соотношение Бретшнайдера и теорема Стюарта’ »

Определитель Смита

Генри Джон Стивен Смит (1826–1883) — английский математик, известный прежде всего своими работами по элементарным делителям, квадратичным формам и формулой Смита — Минковского — Зигеля для масс. В теории матриц используется нормальная форма Смита для матрицы.

Определитель Смита имеет вид

    \[D=\left|\begin{array}{ccccc} (1,1)&(1,2)&(1,3)&\ldots&(1,n)\\ (2,1)&(2,2)&(2,3)&\ldots&(2,n)\\ (3,1)&(3,2)&(3,3)&\ldots&(3,n)\\ \ldots&&&&\\ (n,1)&(n,2)&(n,3)&\ldots&(n,n) \end{array}\right|,\]

где (i,j) обозначает наибольший общий делитель чисел i и j.

А равен этот определитель довольно красивой величине:

    \[D=\varphi(1)\varphi(2)\varphi(3)\ldots\varphi(n),\]

Читать полностью ‘Определитель Смита’ »

О совершенных числах и величинах, обратным их делителям


Сумма величин, обратных всем делителям совершенного числа, равна 2. Например, для числа 28, имеем

    \[\frac{1}{1} +\frac{1}{2} + \frac{1}{4} +\frac{1}{7} +\frac{1}{14} +\frac{1}{28}= 2.\]

Сейчас мы докажем это простое свойство. Но сначала вспомним определение.

Определение. Число называется совершенным, если оно равно сумме всех своих собственных делителей (т.е. всех своих делителей за исключением самого себя). Читать полностью ‘О совершенных числах и величинах, обратным их делителям’ »

Когда происходит что-то странное с бесконечными суммами

Лучано Рила

Гвидо Гранди (1671--1742)

Когда мы имеем дело с бесконечностью, могут случаться странные вещи. Рассмотрим следующую сумму

    \[S=1-1+1-1+1-1+1-1+\ldots\]

Она называется рядом Гранди, в честь итальянского математика, философа и священника Гвидо Гранди (1671-1742).

Если сгруппировать слагаемые следующим образом

    \[S=(1-1)+(1-1)+(1-1)+(1-1)+\ldots,\]

то легко увидеть, что S должно быть равно нулю, поскольку каждая скобка равна нулю. Однако ничто не мешает нам сгруппировать слагаемые по-другому, например, так:

    \[S=1+(-1+1)+(-1+1)+(-1+1)+(-1+1)+\ldots\]

В этом случае должно S должно быть равно 1! Существует еще и третий способ оценки этой суммы. Скажем, мы перепишем ее в виде

    \[S=0+1-1+1-1+1-1+1-1+\ldots\]

Все, что мы сделали, — добавили нуль в начале, так что я надеюсь, все согласны, что сумма совсем не изменилась. Теперь запишем ее два раза

    \[S=1-1+1-1+1-1+1-1+\ldots\]

    \[S=0+1-1+1-1+1-1+1-\ldots\]

и сложим оба ряда, получим Читать полностью ‘Когда происходит что-то странное с бесконечными суммами’ »