Рубрика «Статьи по математике»

Таинственное число 6174

Никто не может раскрыть тайну

Число 6174 — в самом деле загадочное число. Это не бросается в глаза. Но как мы сейчас увидим, любой, кто умеет вычитать, может раскрыть тайну числа 6174.

Операция Капрекара

В 1949 году математик Д. Р. Капрекар из Деолали, Индия, разработал процесс, известный теперь как операция Капрекара. Сначала выберем четырехзначное число, состоящее хотя бы из двух различных цифр. Затем переставим его цифры, чтобы получить самое большое и самое маленькое из возможных чисел, образованных цифрами этого числа. Наконец, вычтем самое маленькое число из самого большого, получим новое число, для которого снова повторим операцию.

Это простая операция, но Капрекар обнаружил, что она приводит к неожиданному результату. Давайте попробуем делать ее, начиная с числа 2005. Максимальное число, которое мы можем составить из этих цифр, равно 5200, минимальное — 0025 или 25 (если одна или несколько цифр равны нулю, поместим нули слева для минимального числа). Читать полностью ‘Таинственное число 6174’ »

Числа Лишрел

"Бог создал целые числа, всё остальное — дело рук человека" (Леопольд Кронекер)

Возьмем число. Переставим его цифры в обратном порядке, получим еще одно число. Теперь сложим эти два числа. Является ли сумма палиндромом (числом, читающимся с конца так же, как с начала)? Если нет, переставим цифры суммы и повторим процесс. Будем продолжать операции перестановки цифр и сложения до тех пор, пока не получим палиндром. Большинство чисел становятся палиндромами очень быстро, за несколько итераций. Возьмем, например, число 153; требуется всего две итерации.

Итерация Число Перестановка Сумма
1 153 + 351 = 504
2 504 + 405 = 909

Однако некоторые числа не становятся палиндромами вне зависимости от того, сколько сделано итераций записывания цифр в обратном порядке и сложения. Такие числа называются числами Лишрел. Они были названы так Уэйдом Ван Ландингхемом (Wade Van Landingham; Лишрел — примерная анаграмма имени его подруги Шерил, по-английски Lychrel — Cheryl). Первое число, которое может быть числом Лишрел — 196. Однако нет доказательства, что это число, а также числа похожие на него, такие как 879 и 1997 в самом деле являются числами Лишрел. Просто процедура перестановки —сложения для них не привела к получению палиндрома, хотя было сделано около миллиарда итераций.

Читать полностью ‘Числа Лишрел’ »

Центральная предельная теорема

Каков средний вес человека?

Основная идея статистики заключается в том, что о населении в целом можно сказать что-то, выяснив это для меньшей группы людей. Без этой идеи не было бы опросов общественного мнения или предвыборных прогнозов, не было бы возможности испытать новые медицинские препараты или исследовать безопасность мостов и т. д. В значительной степени за факт, что мы можем делать все это и уменьшать неопределенности прогнозов, отвечает центральная предельная теорема.

Чтобы понять, как работает теорема, представим, что нужно узнать средний вес жителя Великобритании. Вы выходите и измеряете вес, скажем, ста случайно выбранных людей, и находите средний вес человека для этой группы — назовем это выборочным средним. Теперь выборочное среднее должно дать достаточно точное представление о среднем по стране. Но что, если вам в выборке попались только полные люди или, наоборот, только очень худые?

Чтобы получить представление о том, насколько типичным будет полученное среднее значение, нужно знать, как средний вес выборки из 100 человек варьируется в зависимости от населения: если вы взяли очень много групп из 100 человек и нашли средний вес для каждой группы, то насколько будут различаться найденные числа? И насколько его среднее (среднее средних) будет совпадать с истинным средним весом человека в популяции? Читать полностью ‘Центральная предельная теорема’ »

Уравнения Навье — Стокса

Турбулентность грандиозна, красива и потенциально опасна. Она возникает в жидкостях, например, в бьющихся волнах и бурных реках, а также в газах, например, в воздушных потоках вокруг машины или самолета. Турбулентность невероятно трудно поддается описанию, что связано с самой ее природой. Если измерять скорость и определять направление течения воды в турбулентном потоке, то можно получить совершенно разные значения в точках, расположенных очень близко друг к другу.

Турбулентность воды: водопады Игуасу на границе Бразилии и Аргентины

Несмотря на эту сложность, ученые считают, что течение жидкости с приемлемым уровнем точности описывается уравнениями Навье — Стокса. Читать полностью ‘Уравнения Навье — Стокса’ »

Теоремы Тебо

Виктор Мишель Жан-Мари Тебо (1882–1960) — французский математик, геометр. Закончил учительский колледж города Лаваль в департаменте Майенн, преподавал математику в школе, в технической школе, затем получил право преподавания в колледжах для учителей. Однако в 1910 г. отказался от преподавания, так как скромное жалованье не позволяло ему содержать семью, в которой к тому времени было 6 детей. До 1923 г. работал фабричным суперинтендантом, а потом — главным страховым инспектором. В 1940 г. вышел на пенсию. Несмотря на занятость на работе, Тебо все время интенсивно и плодотворно занимался математикой. В 1932 г. он стал членом Американской математической ассоциации. В 1935 г. он стал Кавалером ордена бельгийской короны за деятельность в Брюссельском научном обществе и сотрудничество с журналами Annales и Mathesis. В 1943 г. он установил премию Виктора Тебо. Она присуждается раз в два года Парижской академией наук за оригинальные исследования по геометрии или теории чисел, причем предпочтение отдается учителям средних или даже начальных школ.

Первая теорема Тебо. Центры квадратов, построенных на сторонах параллелограмма, лежат в вершинах квадрата.

Доказательство. Обозначим через A и C центры больших квадратов, через B и D — центры малых квадратов, через O — точку пересечения диагоналей параллелограмма (см. рис.).

Читать полностью ‘Теоремы Тебо’ »

Скачок Виета

В математике скачок Виета, известный также как отражение корней, — метод доказательства, используемый в теории чисел. Он наиболее часто применяется для задач, в которых дано соотношение между двумя натуральными числами и требуется доказать некоторое утверждение, связанное с этими числами. Есть несколько методов скачков Виета, но все они связаны общей идеей бесконечного спуска, позволяющей находить новые решения уравнения с использованием формул Виета.

История метода

Скачок Виета — относительно новый метод в решении математических олимпиадных задач. Первая задача, для решения которой он был использован, — задача Международной олимпиады по математике (ММО) 1988 г., она считается самой сложной из задач этой олимпиады. Артур Энгель (немецкий учитель математики, автор множества учебников, книг и статей по математике) написал о сложности этой задачи: Читать полностью ‘Скачок Виета’ »