Иоганн Георг Зейфус

Георг Зейфус родился в 1832 году в семье регистратора судебной палаты Иоганна Хайнриха Зейфуса и Сюзанны Магдалины Ноак. Он учился в Höhere Gewerbeschule Darmstadt, Высшей торговой школе Дармштадта, основанной в 1836 году. Гюнтер Керн в книге Die Entwicklung des Faches Mathematik an der Universität Heidelberg 1835-1914 (Universitätsbibliothek, Heidelberg, 1992) пишет:

«Как признает сам Зейфус, в юности он проявлял больше интереса к языкам и истории, чем к математике. В пятнадцать лет он поступил в Политехникум в Дармштадте, где, вдохновленный своим учителем Штрекером, посвятил себя изучению математики, механики, физики и химии, но продолжал посещать занятия по латыни, французскому языку, а также истории Германии и литературе».

Политехникум, который Керн упоминает в этой цитате, на самом деле является Высшей торговой школой Дармштадта, переименованной в Политехническую школу в 1868 году, спустя много лет после того, как Зейфус ее окончил. В торговой школе Зейфус изучал математику, техническое рисование, физику и химию. Он получил там также практические инженерные навыки. Из его учителей стоит отметить Эдмунда Кюльпа (1800-1862)  ̶  учившегося у Адольфа Кетле в Брюсселе. Кюльп учился в Гейдельбергском университете и получил докторскую степень в университете Гисена в 1824 году. В первые годы обучения в школе химию Зейфусу преподавал Адольф Штрекер (1822-1871), но Штрекер ушел в 1846 году в Университет Гисена. Другим учителем Зейфуса был Людвиг Кристиан Винер, назначенный в школу в 1848 году и преподававший физику, механику, гидравлику и описательную геометрию. Зейфус окончил Высшую торговую школу в 1850 году «summa cum laude» (с максимальным возможным баллом) и начал изучать математику в университете Юстуса Либига в Гисене.

В Гисене основным его интересом был анализ конечных разностей. Полученные результаты он обобщил в двух своих статьях, написанных в 1856 и 1858 годах.

31 июля 1853 года он закончил учебу в Гисене, получив докторскую степень и право преподавать в гимназии. Хотя он учился хорошо, он считал, что университет не способствовал его развитию как математика. После окончания университета он получил временную преподавательскую должность в торговой школе Дармштадта, где помогал своему бывшему учителю Эдмунду Кюльпу и преподавал математику и физику с 1853 по 1858 год.

В 1857 году Зейфус получил место преподавателя по математике и физике в университете им. Рупрехта-Карла в Гейдельберге, куда он представил свою диссертацию «Трактат о некоторых математических объектах». Эта диссертация была рассмотрена Отто Гессе и Густавом Кирхгофом. Гессе оценил три ее математические части, а Кирхгоф дал оценку части, имеющей отношение к физике. Гессе написал в своем докладе, что диссертация:

«… содержит трудные части предмета, доступные только наиболее продвинутым математикам».

Киргхоф также похвалил раздел, посвященный термодинамике.

Отто Гессе был назначен на кафедру математики в Гейдельбергском университете в 1856 году. Он изучал теорию определителей, занимаясь теорией инвариантов, и благодаря ему Зейфус стал заниматься теорией определителей. Свою первую работу, содержавшую три статьи, Зейфус опубликовал в 1858 году («О признаках отдельных членов определителя», «Об определенном определителе» и Комментарий к книге Ричарда Балтзера «Теория и применение определителей по первоисточникам»).

В первой из этих работ Зейфус доказывает правило Габриэля Крамера об изменении знаков определителя. Во второй он доказывает правило о тензорном произведении квадратных матриц. Некоторые авторы считают, что тензорное произведение, которое называют произведением Кронекера, следует называть «произведением Зейфуса». Обратите внимание, что произошло небольшое изменение: «определитель» изменился на «матрицу». Ранние работы изучали матрицы, исходя из определителей. В третьей части он подробно анализирует книгу Ричарда Балтзера. Эта книга содержит много иллюстративных ссылок на начала теории определителей и ее приложения.

Зейфус работал доцентом в Гейдельбергском университете в течение четырех лет с 1857 по 1861 год. Он преподавал арифметику, алгебру и геометрию, дифференциальное исчисление, теорию определенных интегралов, теорию эллиптических функций, теорию уравнений высших порядков, аналитическую геометрию на плоскости и в трехмерном пространстве и аналитическую механику. 11 июля 1861 года Зейфус женился на Луизе Штайн (1838-1911).

В ноябре 1861 года Ричард Дедекинд покинул Политехникум в Цюрихе после трех лет преподавания там и занял должность в Брансуикском политехникуме. Зейфус подал заявку на вакантную должность в Цюрихе, но это место было предложено Рудольфу Липшицу. Тот, однако, отказался, и тогда должность предложили Элвину Кристоффелю. Зейфус был не в состоянии найти постоянную должность в Германии и принял должность профессора математики и физики в Ревеле (ныне Таллинн в Эстонии) в сентябре 1860 года. Он преподавал в Соборной школе в Ревеле, и в Ревеле 20 августа 1862 года у него родился сын Густав Хайнрих Юлий Вильгельм Зейфус. Однако Зейфусу не очень нравилось в Соборной школе в Ревеле, так как он чувствовал, что не может там полностью реализовать свой потенциал исследователя.

В феврале 1862 года Зейфус подал заявку на должность профессора математики или физики Латвийского политехнического университета. Его заявление включало рекомендации многих математиков, включая Людвига Кристиана Винера, Фердинанда Миндинга, Осипа Ивановича Сомова, Оскара Шлёмильха, Отто Гессе, Густава Кирхгофа и Ричарда Дедекинда. Зейфус занял долджность профессора высшей математики в Политехническом университете Риги 9 января 1863 года. Это было новое учреждение, которому требовалось сначала утвердить свои позиции. Когда ему предложили должность в Профессиональной школе во Франкфурте-на-Майне, Зейфус решил вернуться в Германию. Он занял эту должность в 1864 году. В этой школе он преподавал алгебраический анализ, тригонометрию, теорию уравнений высшей степени, аналитическую геометрию на плоскости, механику, дифференциальное и интегральное исчисление и трехмерную аналитическую геометрию. Его второй ребенок, дочь Корнелия Шарлотта Мари Огюст Матильда Виктория Зейфус, родилась в Дармштадте 16 сентября 1864 года. Зейфус продолжал занимать должность во Франкфурте-на-Майне до конца своей карьеры.

Зейфус умер во Франкфурте-на-Майне 5 мая 1901 года. Он был похоронен в Гейдельберге на горном кладбище Гейдельберг-Сюдштадт. Также похоронены его жена Луиза, его дочь Корнелия (1864-1949) и муж его дочери Георг Антон Карх (1856-1937).

Сегодня имя Зйефуса известно немногим, но те, кто знает о нем, почти наверняка знают его в связи с  тензорным произведением матриц. Не предлагая определенного мнения о том, следует ли назвать произведение Кронекера произведением Зейфуса, приведем цитаты из нескольких источников.

Эми Нангвилл и Уильям Дж. Стюарт пишут:

«Операция, определенная символом \otimes, впервые была использована Иоганном Георгом Зейфусом в 1858 году. С тех пор ее назвали разными именами, включая произведение Зейфуса, преобразование произведения, конъюнкцию, тензорное произведение, прямое произведение и произведение Кронекера. В конце концов, утвердилось название символа и операции \otimes как произведение Кронекера».

Чжан и Ф. Дин пишут:

«Произведение Кронекера, названное в честь немецкого математика Леопольда Кронекера, очень важно в линейной алгебре и обработке сигналов. На самом деле, произведение Кронекера следует называть произведением Зейфуса, потому что Иоганн Георг Зейфус опубликовал в 1858 г. статью, в которой содержалось известное равенство, |A\otimes B|=|A|^n|B|^m для квадратных матриц A и B порядков m и n».

Роджер А. Хорн и Чарльз Р. Джонсон пишут:

«Некоторые историки математики подвергли сомнению связь произведения с именем Кронекера на том основании, что в литературе нет известных доказательств приоритета Кронекера в его открытии или использовании. Действительно, авторитетная история сэра Томаса Мирэ называет \det (A \otimes B) определителем Зейфуса для A и B, поскольку тождество

    \[|A\otimes B|=|A|^n|B|^m\]

появляется в работе 1858 г. Иоганна Георга Зейфуса («Über eine gewisse Determinante», «Zeitschrift für Mathematik und Physik» 3 (1858), 298-301 »). Следуя примеру Мирэ, несколько более поздних авторов назвали A\otimes B матрицей Зейфуса для A и B, например, Д.Е. Резерфорд «Об условии равенства двух матриц Зейфуса» (Bull. Amer. Math. Soc., 39 (1933), 801-808) и А. Айткен, «Нормальная форма составных и индуцированных матриц», (Proc. London Math. Soc 38 (2) (1935), 354-376). Тем не менее, ряд влиятельных текстов на рубеже веков и позже ассоциировал с произведением \otimes имя Кронекера, и это название сегодня почти общеупотребительно».

Гарольд Хендерсон, Фридрих Пукельсхайм и Шейл Сэал пишут:

«Наша история начинается в Гейдельбергском университете с Иоганна Георга Зейфуса (1832-1901), который, согласно биографическим заметкам Поггендорфа (1863, 1898), публиковал статьи по определителям по меньшей мере до 1868 года, до перехода к занятию астрономией. В частности, работа Зейфуса 1858 года содержит равенство

    \[|A\otimes B|=|A|^b|B|^a\]

для квадратных матриц A и B порядков a и b соответственно. Зейфус писал в терминах определителей, а не матриц, следуя тогдашней обычной практике использования термина «детерминант» как для того, что мы теперь называем квадратной матрицей, так и для ее определителя. … К сожалению, этот результат Зейфуса, кажется, был забыт на более чем пятьдесят лет, пока его не переоткрыл Мирэ (1911), который приписал его Зейфусу и соответственно назвал | |A\otimes B| определителем Зейфуса для A и B. Другие, в частности Резерфорд (1933) и Айткен (1935), и его ученик Ледерман (1936), следуя примеру Мирэ, пошли дальше и назвали A\otimes B матрицей Зейфуса для A и B. Принятие этого названия Айткеном представляет интерес в свете более позднего комментария Ледермана (1968 г.) о том, что Айткен «особенно любил подчеркивать претензии менее известных математиков прежних времен на открытия, ошибочно приписываемые их более известным современникам. Многие из его исторических ссылок были почерпнуты из монументальной работы сэра Томаса Мирэ по определителям, которая вызывала у Айткена глубокое восхищение»».

Хотя Зейфус больше всего известен своими работами по определителям, он получил также некоторые результаты в теории разностных уравнений, дифференциальном и интегральном исчислении и комбинаторике. Позже, однако, больше внимания он уделял физике и астрономии. Он принимал активное участие в ежегодных встречах Общества немецких натуралистов и врачей, особенно когда они проходили во Франкфурте-на-Майне или в окрестностях города. Он также участвовал во встречах Натуралистического общества в Ханау. Там он читал лекции по определителям, показал модель римановой поверхности и прочитал лекцию «О возможной причине задержки вращения Земли». В этой лекции он показал,

«… что магнитные силы, с которыми небесные тела воздействуют друг на друга, не могут быть причиной этой задержки, тогда как постоянное магнитное поле, в котором движутся планеты, может вызвать изменение прецессии, что может привести к объяснению данного факта».

Другие лекции, связанные с астрономией, включали «О метеоритах», прочитанной в 1870 году, и «Некоторые объяснения появления Северного сияния» в 1871 году.

Он написал книгу «Пневматическая канализация проливает свет на здравоохранение, сельское хозяйство и экономику», которая была переведена на английский язык под названием «Пневматическая система очистки сточных вод». Книга начинается с исторического введения, в котором Зйефус ссылается на канализационные системы, упомянутые в Библии, построенные индусами, древними египтянами, вавилонянами и римлянами в 600 году до нашей эры. В США был запрошен патент на систему очистки сточных вод Зейфуса, описанную в книге, и он получил патентное письмо от Патентного ведомства Соединенных Штатов в 1870 году (письмо с патентом № 100347).

Источник: http://www-history.mcs.st-andrews.ac.uk/Biographies/Zehfuss.html

Оставьте свой отзыв

Добавить изображение